Дифференцирующие и интегрирующие RC-цепи. Дифференцирующие цепи Интегрирующая цепь RC

Подписаться
Вступай в сообщество «ahhost.ru»!
ВКонтакте:

Рассмотрим электрическую цепь из резистора сопротивлением R и конденсатора ёмкостью C , представленную на рисунке.

Элементы R и C соединены последовательно, значит, ток в их цепи можно выразить, исходя из производной напряжения заряда конденсатора dQ/dt = C(dU/dt) и закона Ома U/R . Напряжение на выводах резистора обозначим U R .
Тогда будет иметь место равенство:

Проинтегрируем последнее выражение . Интеграл левой части уравнения будет равен U out + Const . Перенесём постоянную составляющую Const в правую часть с тем же знаком.
В правой части постоянную времени RC вынесем за знак интеграла:

В итоге получилось, что выходное напряжение U out прямо-пропорционально интегралу напряжения на выводах резистора, следовательно, и входному току I in .
Постоянная составляющая Const не зависит от номиналов элементов цепи.

Чтобы обеспечить прямую пропорциональную зависимость выходного напряжения U out от интеграла входного U in , необходима пропорциональность входного напряжения от входного тока.

Нелинейное соотношение U in /I in во входной цепи вызвано тем, что заряд и разряд конденсатора происходит по экспоненте e -t/τ , которая наиболее нелинейна при t/τ ≥ 1, то есть, когда значение t соизмеримо или больше τ .
Здесь t - время заряда или разряда конденсатора в пределах периода.
τ = RC - постоянная времени - произведение величин R и C .
Если взять номиналы RC цепи, когда τ будет значительно больше t , тогда начальный участок экспоненты для короткого периода (относительно τ ) может быть достаточно линейным, что обеспечит необходимую пропорциональность между входным напряжением и током.

Для простой цепи RC постоянную времени обычно берут на 1-2 порядка больше периода переменного входного сигнала, тогда основная и значительная часть входного напряжения будет падать на выводах резистора, обеспечивая в достаточной степени линейную зависимость U in /I in ≈ R .
В таком случае выходное напряжение U out будет с допустимой погрешностью пропорционально интегралу входного U in .
Чем больше величины номиналов RC , тем меньше переменная составляющая на выходе, тем более точной будет кривая функции.

В большинстве случаев, переменная составляющая интеграла не требуется при использовании таких цепей, нужна только постоянная Const , тогда номиналы RC можно выбирать по возможности большими, но с учётом входного сопротивления следующего каскада.

В качестве примера, сигнал с генератора - положительный меандр 1V периодом 2 mS подадим на вход простой интегрирующей цепи RC с номиналами:
R = 10 kOhm, С = 1 uF. Тогда τ = RC = 10 mS.

В данном случае постоянная времени лишь в пять раз больше времени периода, но визуально интегрирование прослеживается в достаточной степени точно.
График показывает, что выходное напряжение на уровне постоянной составляющей 0.5в будет треугольной формы, потому как участки, не меняющиеся во времени, для интеграла будут константой (обозначим её a ), а интеграл константы будет линейной функцией. ∫adx = ax + Const . Величина константы a определит тангенса угла наклона линейной функции.

Проинтегрируем синусоиду, получим косинус с обратным знаком ∫sinxdx = -cosx + Const .
В данном случае постоянная составляющая Const = 0.

Если подать на вход сигнал треугольной формы, на выходе будет синусоидальное напряжение.
Интеграл линейного участка функции - парабола. В простейшем варианте ∫xdx = x 2 /2 + Const .
Знак множителя определит направление параболы.

Недостаток простейшей цепочки в том, что переменная составляющая на выходе получается очень маленькой относительно входного напряжения.

Рассмотрим в качестве интегратора Операционный Усилитель (ОУ) по схеме, показанной на рисунке.

С учётом бесконечно большого сопротивления ОУ и правила Кирхгофа здесь будет справедливо равенство:

I in = I R = U in /R = - I C .

Напряжение на входах идеального ОУ здесь равно нулю, тогда на выводах конденсатора U C = U out = - U in .
Следовательно, U out определится, исходя из тока общей цепи.

При номиналах элементов RC , когда τ = 1 Sec, выходное переменное напряжение будет равно по значению интегралу входного. Но, противоположно по знаку. Идеальный интегратор-инвертор при идеальных элементах схемы.

Дифференцирующая цепь RC

Рассмотрим дифференциатор с применением Операционного Усилителя.

Идеальный ОУ здесь обеспечит равенство токов I R = - I C по правилу Кирхгофа.
Напряжение на входах ОУ равно нулю, следовательно, выходное напряжение U out = U R = - U in = - U C .
Исходя из производной заряда конденсатора, закона Ома и равенства значений токов в конденсаторе и резисторе, запишем выражение:

U out = RI R = - RI C = - RC(dU C /dt) = - RC(dU in /dt)

Отсюда видим, что выходное напряжение U out пропорционально производной заряда конденсатора dU in /dt , как скорости изменения входного напряжения.

При величине постоянной времени RC , равной единице, выходное напряжение будет равно по значению производной входного напряжения, но противоположно по знаку. Следовательно, рассмотренная схема дифференцирует и инвертирует входной сигнал.

Производная константы равна нулю, поэтому постоянная составляющая при дифференцировании на выходе будет отсутствовать.

В качестве примера, подадим на вход дифференциатора сигнал треугольной формы. На выходе получим прямоугольный сигнал.
Производная линейного участка функции будет константой, знак и величина которой определится наклоном линейной функции.

Для простейшей дифференцирующей цепочки RC из двух элементов используем пропорциональную зависимость выходного напряжения от производной напряжения на выводах конденсатора.

U out = RI R = RI C = RC(dU C /dt)

Если взять номиналы элементов RC, чтобы постоянная времени была на 1-2 порядка меньше длины периода, тогда отношение приращения входного напряжения к приращению времени в пределах периода может определять скорость изменения входного напряжения в определённой степени точно. В идеале это приращение должно стремиться к нулю. В таком случае основная часть входного напряжения будет падать на выводах конденсатора, а выходное будет составлять незначительную часть от входного, поэтому для вычислений производной такие схемы практически не используются.

Наиболее часто дифференцирующие и интегрирующие цепи RC применяют для изменения длины импульса в логических и цифровых устройствах.
В таких случаях номиналы RC рассчитывают по экспоненте e -t/ RC исходя из длины импульса в периоде и требуемых изменений.
Например, ниже на рисунке показано, что длина импульса T i на выходе интегрирующей цепочки увеличится на время 3τ . Это время разряда конденсатора до 5% амплитудного значения.

На выходе дифференцирующей цепи амплитудное напряжение после подачи импульса появляется мгновенно, так как на выводах разряженного конденсатора оно равно нулю.
Далее следует процесс заряда и напряжение на выводах резистора убывает. За время 3τ оно уменьшится до 5% амплитудного значения.

Здесь 5% - величина показательная. В практических расчётах этот порог определится входными параметрами применяемых логических элементов.

Замечания и предложения принимаются и приветствуются!

Мы имеем полное право перейти к рассмотрению цепей, состоящих из этих элементов 🙂 Этим мы сегодня и займемся.

И первая цепь, работу которой мы рассмотрим – дифференцирующая RC-цепь.

Дифференцирующая RC-цепь.

Из названия цепи, в принципе, уже понятно, что за элементы входят в ее состав – это конденсатор и резистор 🙂 И выглядит она следующим образом:

Работа данной схемы основана на том, что ток, протекающий через конденсатор , прямо пропорционален скорости изменения напряжения, приложенного к нему:

Напряжения в цепи связаны следующим образом (по закону Кирхгофа):

В то же время, по закону Ома мы можем записать:

Выразим из первого выражения и подставим во второе:

При условии, что (то есть скорость изменения напряжения низкая) мы получаем приближенную зависимость для напряжения на выходе:

Таким образом, цепь полностью оправдывает свое название, ведь напряжение на выходе представляет из себя дифференциал входного сигнала.

Но возможен еще и другой случай, когда title="Rendered by QuickLaTeX.com" height="22" width="134" style="vertical-align: -6px;"> (быстрое изменение напряжения). При выполнении этого равенства мы получаем такую ситуацию:

То есть: .

Можно заметить, что условие будет лучше выполняться при небольших значениях произведения , которое называют постоянной времени цепи :

Давайте разберемся, какой смысл несет в себе эта характеристика цепи 🙂

Заряд и разряд конденсатора происходит по экспоненциальному закону:

Здесь – напряжение на заряженном конденсаторе в начальный момент времени. Давайте посмотрим, каким будет значение напряжения по истечении времени :

Напряжение на конденсаторе уменьшится до 37% от первоначального.

Получается, что – это время, за которое конденсатор:

  • при заряде – зарядится до 63%
  • при разряде – разрядится на 63% (разрядится до 37%)

С постоянной времени цепи мы разобрались, давайте вернемся к дифференцирующей RC-цепи 🙂

Теоретические аспекты функционирования цепи мы разобрали, так что давайте посмотрим, как она работает на практике. А для этого попробуем подавать на вход какой-нибудь сигнал и посмотрим, что получится на выходе. В качестве примера, подадим на вход последовательность прямоугольных импульсов:

А вот как выглядит осциллограмма выходного сигнала (второй канал – синий цвет):

Что же мы тут видим?

Большую часть времени напряжение на входе неизменно, а значит его дифференцаил равен 0 (производная константы = 0). Именно это мы и видим на графике, значит цепь выполняет свою дифференцирующую функцию. А с чем же связаны всплески на выходной осциллограмме? Все просто – при “включении” входного сигнала происходит процесс зарядки конденсатора, то есть по цепи проходит ток зарядки и напряжение на выходе максимально. А затем по мере протекания процесса зарядки ток уменьшается по экспоненциальному закону до нулевого значения, а вместе с ним уменьшается напряжение на выходе, ведь оно равно . Давайте увеличим масштаб осциллограммы и тогда мы получим наглядную иллюстрацию процесса зарядки:

При “отключении” сигнала на входе дифференцирующей цепи происходит аналогичный переходный процесс, но только вызван он не зарядкой, а разрядкой конденсатора:

В данном случае постоянная времени цепи у нас имеет небольшую величину, поэтому цепь хорошо дифференцирует входной сигнал. По нашим теоретическим расчетам, чем больше мы будем увеличивать постоянную времени, тем больше выходной сигнал будет похож на входной. Давай проверим это на практике 🙂

Будем увеличивать сопротивление резистора, что и приведет к росту :

Тут даже не надо ничего комментировать – результат налицо 🙂 Мы подтвердили теоретические выкладки, проведя практические эксперименты, так что давайте переходить к следующему вопросу – к интергрирующим RC-цепям .


Запишем выражения для вычисления тока и напряжения данной цепи:

В то же время ток мы можем определить из Закона Ома:

Приравниваем эти выражения и получаем:

Проинтегрируем правую и левую части равенства:

Как и в случае с дифференцирующей RC-цепочкой здесь возможны два случая:

Для того, чтобы убедиться в работоспособности цепи, давайте подадим на ее вход точно такой же сигнал, какой мы использовали при анализе работы дифференцирующей цепи, то есть последовательность прямоугольных импульсов. При малых значениях сигнал на выходе будет очень похож на входной сигнал, а при больших величинах постоянной времени цепи, на выходе мы увидим сигнал, приближенно равный интегралу входного. А какой это будет сигнал? Последовательность импульсов представляет собой участки равного напряжения, а интеграл от константы представляет из себя линейную функцию (). Таким образом, на выходе мы должны увидеть пилообразное напряжение. Проверим теоретические выкладки на практике:

Желтым цветом здесь изображен сигнал на входе, а синим, соответственно, выходные сигналы при разных значениях постоянной времени цепи. Как видите, мы получили именно такой результат, который и ожидали увидеть 🙂

На этом мы и заканчиваем сегодняшнюю статью, но не заканчиваем изучать электронику, так что до встречи в новых статьях! 🙂

С одним из плеч, обладающих ёмкостным сопротивлением переменному току.

Энциклопедичный YouTube

    1 / 3

    Электрические цепи (часть 1)

    Лекция 27. Заряд и разряд конденсатора через сопротивление (RC-цепочка)

    Лекция 29. Прохождение переменного тока через RC-цепочку

    Субтитры

    Мы провели много времени, обсуждая электростатические поля и потенциал заряда, или потенциальную энергию неподвижного заряда. Ну а теперь давайте посмотрим, что произойдет, если позволить заряду двигаться. И это будет намного интереснее, ведь вы узнаете, как работает большая часть современного мира вокруг нас. Итак, предположим, что есть источник напряжения. Как бы мне его нарисовать? Пусть будет так. Возьму желтый цвет. Вот это источник напряжения, также известный нам как батарейка. Здесь положительный контакт, здесь отрицательный. Принцип работы батарейки - это тема для отдельного видео, которое я обязательно запишу. Стоит сказать только, что неважно, сколько заряда - я все вам объясню через секунду - так вот, неважно, сколько заряда перетекает с одной стороны батарейки в другую, каким-то образом напряжение остается постоянным. И это не совсем понятная вещь, ведь мы уже изучили конденсаторы, и еще больше о них узнаем в контексте цепей, но мы уже знаем о конденсаторах то, что если убрать часть заряда с одного из его концов, то общее напряжение на конденсаторе уменьшится. Но батарейка - волшебная вещь. Кажется, ее изобрел Вольта, и поэтому мы измеряем напряжение в вольтах. Но даже когда одна сторона волшебной батарейки теряет заряд, напряжение, или потенциал между двумя полюсами, остается постоянным. В этом и заключается особенность батарейки. Итак, предположим, что есть этот магический инструмент. У вас наверняка найдется батарейка в калькуляторе или телефоне. Посмотрим, что произойдет если позволим заряду двигаться с одного полюса на другой. Предположим, что у меня есть проводник. Идеальный проводник. Его нужно изображать прямой линией, которая у меня, к сожалению, совсем не получается. Ну вот примерно так. Что же я сделал? В процессе соединения положительного контакта с отрицательным, я показываю вам стандартную систему обозначений для инженеров, электриков, и так далее. Так что возьмите себе на заметку, возможно, вам это когда-нибудь пригодится. Эти линии представляют собой провода. Их необязательно рисовать под прямыми углами. Я так делаю исключительно для наглядности. Предполагается, что этот провод - идеальный проводник, по которому заряд течет свободно, не встречая препятствий. Вот эти зигзаги - это резистор, и он как раз и будет препятствием для заряда. Он не даст заряду двигаться на максимальной скорости. А за ним, разумеется, снова наш идеальный проводник. Итак, в какую же сторону потечет заряд? Раньше я уже говорил, в электрических цепях текут электроны. Электроны - это такие маленькие частицы, которые очень быстро вращаются вокруг ядра атома. И обладают текучестью, которая позволяет им двигаться через проводник. Само движение объектов, если электроны вообще можно назвать объектами - некоторые поспорят, что электроны - просто набор уравнений - но само их движение происходит от отрицательного контакта к положительному. Люди, изначально придумавшие схемы электронных цепей, пионеры электроинженерии, электрики или кто-то там еще, решили, и мне кажется, исключительно, чтобы всех запутать, что ток течет от положительного к отрицательному. Именно так. Поэтому направление тока обычно указывается в эту сторону, а ток обозначается латинской буквой I. Итак, что такое ток? Ток это… Погодите. Прежде, чем я расскажу вам, что такое ток, запомните, большинство учебников, особенно если вы станете инженером, будут утверждать, что ток течет от положительного контакта к отрицательному, но реальный поток частиц идет от отрицательного к положительному. Большие и тяжелые протоны и нейтроны никак не смогут двигаться в эту сторону. Просто сравните размеры протона и электрона, и вы поймете, насколько это безумно. Это электроны, маленькие супербыстрые частицы, что движутся через проводник из отрицательного контакта. Поэтому напряжение можно представить как отсутствие потока электронов в эту сторону. Не хочу вас запутать. Но, как бы там ни было, просто запомните, что это общепринятый стандарт. Но реальность, в какой-то мере, противоположна ему. Так что же такое резистор? Когда ток течет - и я хочу изобразить это как можно ближе к реальности, чтобы вы хорошо видели, что же происходит. Когда электроны текут - вот тут такие маленькие электроны, идут по проводу - мы полагаем, что этот провод настолько удивительный, что они никогда не сталкиваются с его атомами. Но когда электроны добираются до резистора, они начинают врезаться в частицы. Они начинают сталкиваться с другими электронами в этом окружении. Вот это и есть резистор. Они начинают сталкиваться с другими электронами в веществе, сталкиваются с атомами и молекулами. И из-за этого электроны замедляются, сталкиваясь с частицами. Поэтому, чем больше частиц у них на пути, или чем меньше для них места, тем сильнее материал замедляет движение электронов. И как мы позже с вами увидим, чем он длиннее, тем больше у электрона шанс врезаться во что-нибудь. Вот это и есть резистор, он оказывает сопротивление и определяет скорость тока. «Resistance» - это английское слово, обозначающее сопротивление. Итак, ток, хотя и принято, что он течет из положительного к отрицательному, это просто поток заряда за секунду. Давайте запишем. Мы немного отклоняемся от темы, но я думаю, вы все поймете. Ток - это поток заряда, или изменение заряда за секунду, или, скорее, за изменение во времени. Что же такое напряжение? Напряжение - это то, как сильно заряд притягивается к контакту. Поэтому если между этими двумя контактами высокое напряжение, то электроны сильно притягиваются к другому контакту. И если напряжение еще выше, то электроны притягиваются еще сильнее. Поэтому до того, как стало ясно, что напряжение - это всего лишь разность потенциалов, его, называли электродвижущей силой. Но сейчас мы знаем, что это не сила. Это разность потенциалов, мы даже можем назвать это электрическим давлением, и раньше напряжение так и называли - электрическое давление. Как сильно электроны притягиваются к другому контакту? Как только мы откроем электронам путь через цепь, они начнут двигаться. И, поскольку мы считаем эти провода идеальными, не имеющими сопротивления, электроны смогут двигаться максимально быстро. Но, когда они доберутся до резистора, начнут сталкиваться с частицами, и это ограничит их скорость. Поскольку этот объект ограничивает скорость электронов, то неважно, как быстро они будут двигаться после, резистор был ограничителем. Думаю, вы понимаете. Таким образом, хотя электроны здесь и могут двигаться очень быстро, им придется замедлиться здесь, и, даже ускорившись потом, электроны в начале не смогут двигаться быстрее, чем через резистор. Почему же так происходит? Если эти электроны медленнее, то ток здесь меньше, ведь ток это скорость, с которой движется заряд. Поэтому, если ток здесь ниже, а здесь - выше, то начнут образовываться излишки заряда где-то здесь, пока ток будет ждать, чтобы пройти через резистор. И мы знаем, что так не бывает, все электроны двигаются через цепь с одинаковой скоростью. И я иду против общепринятых стандартов, предполагающих, что положительны частицы как-то движутся в этом направлении. Но я хочу, чтобы вы понимали, что происходит в цепи, потому что тогда сложные задачи не будут казаться такими… Такими пугающими, что ли. Мы знаем, что ток, или сила тока, пропорционален напряжению всей цепи, и это называется законом Ома. Закон Ома. Итак, мы знаем, что напряжение пропорционально силе тока на всей цепи. Напряжение равняется силе тока, умноженной на сопротивление, или, иначе, напряжение, деленое на сопротивление равняется силе тока. Это закон Ома, и он действует всегда, если температура остается постоянной. Позже мы изучим это подробнее, и узнаем, что когда резистор нагревается, атомы и молекулы двигаются быстрее, кинетическая энергия увеличивается. И тогда электроны чаще сталкиваются с ними, поэтому сопротивление увеличивается с температурой. Но, если мы предположим, что для некоего материала температура постоянна, а позже мы узнаем, что у разных материалов разные коэффициенты сопротивления. Но для конкретного материала при постоянной температуре для заданной формы, напряжение на резисторе, деленное на его сопротивление, равняется силе тока, текущего через него. Сопротивление объекта измеряется в омах, и обозначается греческой буквой Омега. Простой пример: предположим, что это 16-и вольтовая батарейка, имеющая 16 вольт разности потенциалов между положительным контактом и отрицательным. Итак, 16-и вольтовая батарейка. Предположим, что сопротивление резистора - 8 Ом. Чему же равна сила тока? Я продолжаю игнорировать общепринятый стандарт, хотя, давайте вернемся к нему. Чему равна сила тока в цепи? Здесь все вполне очевидно. Нужно просто применить закон Ома. Его формула: V = IR. Итак, напряжение - 16 вольт, и оно равняется силе тока, умноженной на сопротивление, 8 Ом. То есть сила тока равна 16 Вольт разделить на 8 Ом, что равняется 2. 2 амперам. Амперы обозначаются большой буквой А, и в них измеряется сила тока. Но, как мы знаем, ток - это количество заряда за некоторое время, то есть два кулона в секунду. Итак, 2 кулона в секунду. Ну ладно, прошло уже больше 11 минут. Нужно остановиться. Вы узнали основы закона Ома и, может быть, стали понимать, что же происходит в цепи. До встречи в следующем видео. Subtitles by the Amara.org community

Интегрирующая RC-цепочка

Если входной сигнал подаётся к V in , а выходной снимается с V c (см. рисунок), то такая цепь называется цепью интегрирующего типа.

Реакция цепи интегрирующего типа на единичное ступенчатое воздействие с амплитудой V определяется следующей формулой:

U c (t) = U 0 (1 − e − t / R C) . {\displaystyle \,\!U_{c}(t)=U_{0}\left(1-e^{-t/RC}\right).}

Таким образом, постоянная времени τ этого апериодического процесса будет равна

τ = R C . {\displaystyle \tau =RC.}

Интегрирующие цепи пропускают постоянную составляющую сигнала, отсекая высокие частоты, то есть являются фильтрами нижних частот . При этом чем выше постоянная времени τ {\displaystyle \tau } , тем ниже частота среза. В пределе пройдёт только постоянная составляющая. Это свойство используется во вторичных источниках питания, в которых необходимо отфильтровать переменную составляющую сетевого напряжения. Интегрирующими свойствами обладает кабель из пары проводов, поскольку любой провод является резистором, обладая собственным сопротивлением, а пара идущих рядом проводов ещё и образуют конденсатор, пусть и с малой ёмкостью. При прохождении сигналов по такому кабелю, их высокочастотная составляющая может теряться, причём тем сильнее, чем больше длина кабеля.


Дифференцирующая RC-цепочка

Дифференцирующая RC-цепь получается, если поменять местами резистор R и конденсатор С в интегрирующей цепи. При этом входной сигнал идёт на конденсатор, а выходной снимается с резистора. Для постоянного напряжения конденсатор представляет собой разрыв цепи, то есть постоянная составляющая сигнала в цепи дифференцирующего типа будет отсечена. Такие цепи являются фильтрами верхних частот . И частота среза в них определяется всё той же постоянной времени τ {\displaystyle \tau } . Чем больше τ {\displaystyle \tau } , тем ниже частота, которая может быть без изменений пропущена через цепь.

Дифференцирующие цепи имеют ещё одну особенность. На выходе такой цепи один сигнал преобразуется в два последовательных скачка напряжения вверх и вниз относительно базы с амплитудой, равной входному напряжению. Базой является либо положительный вывод источника, либо "земля", в зависимости от того, куда подключён резистор. Когда резистор подключён к источнику, амплитуда положительного выходного импульса будет в два раза выше напряжения питания. Этим пользуются для умножения напряжения, а так же, в случае подключения резистора к "земле", для формирования двуполярного напряжения из имеющегося однополярного.

В импульсных устройствах задающий генератор часто вырабатывает импульсы прямоугольной формы определенной длительности и амплитуды, которые предназначаются для представления чисел и управления элементами вычислительных устройств, устройств обработки информации и др. Однако для правильного функционирования различных элементов в общем случае требуются импульсы вполне определенной формы, отличной от прямоугольной, имеющие заданные длительность и амплитуду. Вследствие этого возникает необходимость предварительно преобразовывать импульсы задающего генератора. Характер преобразования может быть разным. Так, может потребоваться изменить амплитуду или полярность, длительность задающих импульсов, осуществить их задержку во времени.

Преобразования в основном осуществляются с помощью линейных цепей - четырехполюсников, которые могут быть пассивными и актив­ными. В рассматриваемых цепях пассивные четырехполюсники не содер­жат в своем составе источников питания, активные используют энергию внутренних или внешних источников питания. С помощью линейных цепей осуществляются такие преобразования, как дифференцирование, интегрирование, укорочение импульсов, изменение амплитуды и поляр­ности, задержка импульсов во времени. Операции дифференцирования, интегрирования и укорочения импульсов выполняются соответственно дифференцирующими, интегрирующими и укорачивающими цепями. Изменение амплитуды и полярности импульса может производиться с помощью импульсного трансформатора, а задержка его во времени - линией задержки.

Интегрирующая цепь . На рис. 19.5 приведена схема простейшей цепи (пассивного четырехполюсника), с помощью которой можно выполнить операцию интегрирования входного электрического сигнала, подан­ного на зажимы 1-1 | , если выходной сигнал снимать с зажимов 2-2".

Составим уравнение цепи для мгновенных значений токов и напря­жений по второму закону Кирхгофа:

Отсюда следует, что ток цепи будет изменяться по закону

Если выбрать постоянную временидостаточно большой, то вторым слагаемым в последнем уравнении можно пренебречь, тогдаi(t) = u вх (t)/R.

Напряжение на конденсаторе (на зажимах 2-2") будет равно

(19.1)

Из (19.1) видно, что цепь, приведенная на рис. 19.5, выполняет опе­рацию интегрирования входного напряжения и умножения его на коэф­фициент пропорциональности, равный обратному значению постоянной времени цепи:

Временная диаграмма выходного напряжения интегрирующей цепи при подаче на вход последовательности прямоугольных импульсов показана на рис. 19.6.

Дифференцирующая цепь . С помощью цепи, схема которой приведена на рис. 19.7 (пассивного четырехполюсника), можно выполнять операцию дифференцирования входного электрического сигнала, поданного на зажимы 1-1", если выходной сигнал снимать с зажимов 2-2". Составим уравнение цепи для мгновенных значений тока и напряжений по второму закону Кирхгофа:

Если сопротивление R мало и членом i(t)R можно пренебречь, то ток в цепи и выходное напряжение цепи, снимаемое с R,

(19.2)

Анализируя (19.2), можно видеть, что с помощью рассматриваемой цепи выполняют операции дифференцирования входного напряжения и умножения его на коэффициент пропорциональности, равный постоян­ной времени τ = RC. Форма выходного напряжения дифференцирующей цепи при подаче на вход серии прямоугольных импульсов приведена на рис. 19.8. В этом случае теоретически выходное напряжение должно представлять собой знакопеременные импульсы бесконечно большой амплитуды и малой (близкой к нулю) длительности.

Однако вследствие различия свойств реальной и идеальной диф­ференцирующих цепей, а также конечной крутизны фронта импульса на выходе получают импульсы, амплитуда которых меньше амплитуды входного сигнала, а длительность их определяется как t и = (3 ÷ 4) τ = (3 ÷ 4)RС.

В общем случае форма выходного напряжения зависит от соотно­шения длительности импульса входного сигнала t и и постоянной вре­мени дифференцирующей цепи τ. В момент t 1 входное напряжение при­ложено к резистору R, так как напряжение на конденсаторе скачком изменяться не может. Затем напряжение на конденсаторе возрастает по экспоненциальному закону, а напряжение на резисторе R, т. е. выходное напряжение, снижается по экспоненциальному закону и становится рав­ным нулю в момент t 2 , когда зарядка конденсатора закончится. При малых значениях τ длительность выходного напряжения мала. Когда напряжение u BX (t) становится равным нулю, конденсатор начинает разряжаться через резистор R. Таким образом формируется импульс обратной полярности.

П
ассивные интегрирующие и дифференцирующие цепи имеют сле­дующие недостатки: обе математические операции реализуются прибли­женно, с известными погрешностями. Приходится вводить корректи­рующие звенья, которые, в свою очередь, сильно снижают амплитуду выходного импульса, т. е. без промежуточного усиления сигналов практически невозможныn-кратные дифференцирование и интегриро­вание.

Эти недостатки не свойственны активным дифференцирующему и интегрирующему устройствам. Одним из возможных способов реали­зации этих устройств является применение операционных усилителей (см. гл. 18).

Активное дифференцирующее устройство . Схема такого устройства на операционном усилителе приведена на рис. 19.9. Ко входу 1 подключен конденсатор С, а в цепь обратной связи включен резистор R oc . Так как входное сопротивление чрезвычайно велико (R вх -> ∞), то входной ток обтекает схему по пути, указанному пунктиром. С другой сторо­ны, напряжение и вхОУ в этом включении очень мало, так как К u -> ∞, поэтому потенциал точки В схемы практически равен нулю. Следовательно, ток на входе

(19.3)

Ток на выходе i(t) одновременно является зарядным током кон­денсатора С: dq= Сdu BX (t), откуда

(19.4)

Приравнивая левые части уравнений (19.3) и (19.4), можно написать -и вых (t)/R oc = С du вх (t)/dt, откуда

(19.5)

Таким образом, выходное напряжение операционного усилителя является произведением производной входного напряжения по времени, умноженной на постоянную времени τ = R ОС С.

А
ктивное интегрирующее устройство
. Схема интегрирующего устройст­ва на операционном усилителе, приведенная на рис. 19.10, отличается от дифференцирующего устройства рис. 19.9 только тем, что конденсатор С и резистор R oc (на рис. 19.10 -R 1) поменялись местами. По-прежнему R вх -> ∞ и коэффициент усиления по напряжению К u -> ∞. Следовательно, в устройстве конденсатор С заряжается током i(t) =u BX (t)/R 1 . Так как напряжение на конденсаторе практически равно выходному напряжению (φ B = 0), а операционный усилитель изменяет фазу входного сигнала на выходе на угол π, имеем

(19.6)

Таким образом, выходное напряжение активного интегрирующего устройства есть произведение определенного интеграла от входного напряжения по времени на коэффициент 1/τ.


RC-цепь - электрическая цепь, состоящая из конденсатора и резистора. Её можно рассматривать как делитель напряжения с одним из плеч, обладающих ёмкостным сопротивлением переменному току.

Коэффициент передачи

Интегрирующая RC-цепочка (рис 2) Диффер-ая рис 1

Анализируем RC-цепочку. Применяется как:

1. фильтр частот

Пассивный фильтр

Пассивным электрическим фильтром называется электрическая цепь, предназначенная для выделения определенной полосы частот из сигнала, поступающего на его вход.

Фильтр верхних частот (затухание сигнала)

RC-цепь + ОУ(не даёт затух.сигн,стабильн,коэф пропускания ,усил сигнал

Активный фильтр-менять избирательность фильтра.

Фильтр нижних частот

Коэф передачи


Дифференцирующей цепью называют линейный четырехполюсник, у которого выходное напряжение пропорционально производной входного напряжения. Принципиальная схема дифференцирующей rC -цепи приведена на рис. 5.13, а. Выходное напряжение u вых снимается с резистора r . По второму закону Кирхгофа

а следовательно,

Основные свойства и характеристики п/п. Собственная и примесная проводимость. Зонная энергетическая диаграмма. Уровень Ферми. Генерация и рекомбинация носителей. Время жизни и диффузионная длина. Диффузия и дрейф.

По электрическому сопротивлению полупроводники занимают промежуточное место между проводниками и изоляторами. Полупроводниковые диоды и триоды имеют ряд преимуществ: малый вес и размеры, значительно больший срок службы, большую механическую прочность.

Рассмотрим основные свойства и характеристики полупровод­ников. В отношении их электрической проводимости полупровод­ники разделяются на два типа: с электронной проводимостью и с дырочной проводимостью.

Полупроводники с электронной проводимостью имеют так на­зываемые «свободные» электроны, которые слабо связаны с ядрами атомов. Если к этому полупроводнику приложить разность потенциалов, то «свободные» электроны будут двигаться поступательно – в определенном направлении, создавая, таким образом, электри­ческий ток. Поскольку в этих типах полупроводников электрический ток представляет собой перемещение отрицательно заря­женных частиц, они получили название проводников типа п (от слова negative - отрицательный).

Полупроводники с дырочной проводимостью называются полу­проводниками типа р (от слова positive - положительный). Прохождение электрического тока в этих типах полупроводников можно рассматривать как перемещение положительных зарядов. В полупроводниках с р -проводимостью нет свободных электронов; если атом полупроводника под влиянием каких-либо причин по­теряет один электрон, то он будет заряжен положительно.

Отсутствие одного электрона в атоме, вызывающее положи­тельный заряд атома полупроводника, назвали дыркой (это зна­чит, что образовалось свободное место в атоме). Теория и опыт показывают, что дырки ведут себя как элементарные положитель­ные заряды.

Дырочная проводимость состоит в том, что под влиянием при­ложенной разности потенциалов перемещаются дырки, что равно­сильно перемещению положительных зарядов. В действительности, при дырочной проводимости происходит следующее. Предположим, что имеются два атома, один из которых снабжен дыркой (отсут­ствует один электрон на внешней орбите), а другой находящий­ся справа, имеет все электроны на своих местах (назовем его ней­тральным атомом). Если к полупроводнику приложена разность потенциалов, то под влиянием электрического поля электрон из нейтрального атома, у которого все электроны на своих местах, переместится влево на атом, снабженный дыркой. Благодаря этому атом, имевший дырку, становится нейтральным, а дырка пере­местилась вправо на атом, с которого ушел электрон. В полупровод­никовых приборах процесс «заполнения » дырки свободным электро­ном называется рекомбинацией . В результате рекомбинации исчезает и свободный электрон, и дырка, а создается нейтральный атом. И так, перемещение дырок происходит в направлении, противоположном движению электронов.

В абсолютно чистом (собственном) полупроводнике под действием тепла или света электроны и дырки рождаются парами, поэтому число электронов и дырок в собственном полупроводнике одинаково.

Для создания полупроводников с резко выраженными концентрациями электронов или дырок чистые полупроводники снабжают примесями, образуяпримесные полупроводники . Примеси бывают донорные, дающие электроны, и акцепторные , образующие дырки (т. е. отрывающие электроны от атомов). Следовательно, в полупроводнике с донорной примесью проводимость будет преимущественно электронной, или n – проводимостью. В этих полупроводниках основными носителями зарядов являются электроны, а неосновными – дырки. В полупроводнике с акцепторной примесью, наоборот, основными носителями зарядов являются дырки, а неосновными – электроны; это – полупроводники; с р -проводимостью.

Основными материалами для изготовления полупроводниковых диодов и триодов служат германий и кремний; по отношению к ним донорами являются сурьма, фосфор, мышьяк; акцепторами – индий, галлий, алюминий, бор.

Примеси, которые обычно добавляются в кристаллический полупроводник, резко изменяют физическую картину прохождения электрического тока.

При образовании полупроводника с n -проводимостью в полу­проводник добавляется донорная примесь: например, в полупро­водник германий добавляется примесь сурьмы. Атомы сурьмы, являющиеся донорными, сообщают германию много «свободных» электронов, заряжаясь при этом положительно.


Таким образом, в полупроводнике n-проводимости, образован­ного примесью, имеются следующие виды электрических заря­дов:

1 -подвижные отрицательные заряды (электроны), являющиеся основными носителями (как от донорной примеси, так и от соб­ственной проводимости);

2 -подвижные положительные заряды (дырки) – неосновные носители, возникшие от собственной проводимости;

3 -неподвижные положительные заряды – ионы донорной при­меси.

При образовании полупроводника с р-проводимостью в полупроводник добавляется акцепторная примесь: например, в полупроводник германий добавляется примесь индия. Атомы индия являющиеся акцепторными, отрывают от атомов германия элек­троны, образуя дырки. Сами атомы индия при этом заряжаются отрицательно.

Следовательно, в полупроводнике р-проводимости имеются сле­дующие виды электрических зарядов:

1 -подвижные положительные заряды (дырки) – основные но­сители, возникшие от акцепторной примеси и от собственной про­водимости;

2 -подвижные отрицательные заряды (электроны) – неоснов­ные носители, возникшие от собственной проводимости;

3 -неподвижные отрицательные заряды – ионы акцепторной примеси.

На рис. 1 показаны пластинки р -германия (а) и n -германия (б) с расположением электрических зарядов.

Собственная проводимость полупроводников . Собственным полупроводником,или же полупроводником i-типа называется идеально химически чистый полупроводник с однородной кристаллической решёткой. Ge Si

Кристаллическая структура полупроводника на плоскости может быть определена следующим образом.

Если электрон получил энергию, большую ширины запрещённой зоны, он разрывает ковалентную связь и становится свободным. На его месте образуется вакансия, которая имеет 4-хвалентный

положительный заряд, равный по величине заряду электрона и называется дыркой. В полупроводнике i-типа концентрация электронов ni равна концентрации дырок pi. То есть ni=pi.

Процесс образования пары зарядов электрон и дырка называется генерацией заряда.

Свободный электрон может занимать место дырки, восстанавливая ковалентную связь и при этом излучая избыток энергии. Такой процесс называется рекомбинацией зарядов. В процессе рекомбинации и генерации зарядов дырка как бы движется в обратную сторону от направления движения электронов, поэтому дырку принято считать подвижным положительным носителем заряда. Дырки и свободные электроны, образующиеся в результате генерации носителей заряда, называются собственными носителями заряда, а проводимость полупроводника за счёт собственных носителей заряда называется собственной проводимостью проводника.

2) Примесная проводимость проводников.

Так как у полупроводников i-типа проводимость существенно зависит от внешних условий, в

Полупроводниковых приборах применяются примесные полупроводники.

Если в полупроводник ввести пятивалентную примесь, то 4 валентных электрона восстанавливают ковалентные связи с атомами полупроводника, а пятый электрон остаётся свободным. За счёт этого концентрация свободных электронов будет превышать концентрацию дырок. Примесь, за счёт которой ni>pi, называется донорной примесью.

Полупроводник, у которого ni>pi, называется полупроводником с электронным типом

проводимости, или полупроводником n-типа.

В полупроводнике n-типа электроны называются основными носителями заряда, а дырки– неосновными носителями заряда.

При введении трёхвалентной примеси три её валентных электрона восстанавливают ковалентную связь с атомами полупроводника, а четвёртая ковалентная связь оказывается не восстановленной, т. е. имеет место дырка.

В результатеэтогоконцентрациядырокбудетбольшекон-центрацииэлектронов.

Примесь, при которой pi>ni, называется акцепторной примесью.

Полупроводник, у которого pi>ni, называется полупроводником с дырочным типом

проводимости, или полупроводником p-типа.

В полупроводнике p-типа дырки называются основными носителями заряда, а электроны– неосновными носителями заряда.

← Вернуться

×
Вступай в сообщество «ahhost.ru»!
ВКонтакте:
Я уже подписан на сообщество «ahhost.ru»