Нелинейные элементы. Реферат: Нелинейные элементы Является ли диод линейным элементом цепи

Подписаться
Вступай в сообщество «ahhost.ru»!
ВКонтакте:

Л11 НЕЛИНЕЙНЫЕ ЦЕПИ

Темы СРСП

Подготовка к измерениям, уход за приборами. [Л1], стр.135-140.

Основная литература

1. М.С.Стернзат и А.А.Сапожников, Метеорологические приборы, наблюдения и их обработка, Л, ГМИ, 1959 г.

2.О.А.Городецкий, И.И.Гуральник, В.В.Ларин, Метеорология, методы и технические средства наблюдений, ГМИ, Л, 1984

Дополнительная литература

1. Наставления гидрометеорологическим станциям и постам, ч.1, Алматы, 2002 г.

2. А.В.Капустин, Н.П.Сторожук, Технические средства гидрометеорологической службы, СП, 2005

3. Н.П.Фатеев, Поверка метеорологических приборов, ГМИ, Л, 1975

4. Руководство по поверке метеорологических приборов, ГМИ, Л, 1967

Свойства элементов электрической цепи (сопротивления, индуктивности, емкости) описываются их статическими характеристиками. Статической характеристикой активного сопротивления является его вольтамперная характеристика. Для индуктивности статической характеристикой является вебер-амперная характеристика: зависимость между током i и магнитным потоком Ф. Статическая характеристика емкости представляет собой зависимость между зарядом q и напряжением u c . Она называется кулон-вольтной характеристикой.

Статическая характеристика элемента цепи выражается некоторой функциональной зависимостью y=f(x).

Функцию у можно рассматривать как отклик на воздействие х.

Статическим параметром элемента цепи называют отношение

Дифференциальный параметр равен

Дифференциальный параметр часто называют крутизной (S)

Так как у=рх, то

Параметры линейных элементов не зависят от режима работы т.е. от величины воздействия х.

Поэтому статическая характеристика линейного (пассивного) эле­мента представляет собой прямую, проходящую через начало координат (рис. 9.1.), а дифференциальный параметр – прямую, параллельную оси х (рис. 9.2.).

Рис. 9.1. Статическая характеристика линейного элемента

Рис. 9.2. Дифференциальный параметр линейного элемента

Значения статического и дифференциального параметров линейного элемента совпадают, т.е.

где m y и m x - масштабы по х и у, при m y =m x P=P d =tga.

Для нелинейного элемента характерно то, что его параметры зависят от режима работы, т.е. от величины воздействия х.

Нарисуем статическую характеристику какого-то Н.Э. (рис. 9.З).

Рис. 9.3. Статическая характеристика Н.Э.

В какой-либо произвольной точке характеристики m, статический параметр определяется углом a - наклона секущей, проведенной из начала координат в точку m (рис. 9.3).

Если m х =m y , то P=tga.

Дифференциальный параметр (крутизна) в той же точке пропорцио­нальна тангенсу угла b между касательной к кривой в данной точке и осью х (рис. 9.3).



Любая хаотическая система должна иметь нелинейные элементы или свойства. В линейной системе не может быть хаотических колебаний. В линейной системе периодические внешние воздействия вызывают после затухания переходных процессов периодический отклик того же периода (рис. 2.1). (Исключением являются параметрические линейные системы.) В механических системах возможны следующие нелинейные компоненты:

1) нелинейные упругие элементы;

Рис. 2.1. Схема возможных преобразований сигнала в линейных и нелинейных системах.

2) нелинейное затухание, подобное трению покоя и скольжения;

3) мертвый ход, зазор или билинейные пружины;

4) большинство гидродинамических явлений;

5) нелинейные граничные условия.

Нелинейные упругие эффекты могут быть связаны либо со свойствами веществ, либо с геометрическими особенностями. Например, соотношение напряжений в образце из резины и его деформации нелинейно. Однако, хотя соотношение напряжений и деформаций стали обычно линейно вплоть до предела текучести, сильные изгибы балки, плиты или оболочки могут быть нелинейно связаны с приложенными силами и моментами. Подобные эффекты, связанные с сильными смещениями или поворотами, в механике обычно называются геометрическими нелинейностями.

Нелинейные свойства электромагнитных систем обусловлены следующими факторами:

1) нелинейными сопротивлениями, емкостями или индуктивными элементами;

2) гистерезисом в ферромагнитных материалах;

3) нелинейными активными элементами, подобными вакуумным лампам, транзисторам и диодам;

4) эффектами, характерными для движущихся сред, например электродвижущей силой , где v - скорость, а В - магнитное поле;

5) электромагнитными силами, например , где J - ток, или , где М - дипольный магнитный момент.

Примерами нелинейных устройств являются такие обычные элементы электрических цепей, как диоды и транзисторы.

Рис. 2.2. Нелинейные задачи с несколькими положениями равновесия: а - продольный изгиб тонкого упругого стержня под действием осевой нагрузки на торце; 6 - продольный изгиб упругого стержня нелинейными магнитными массовыми силами.

Такие магнитные материалы, как железо, никель или ферриты характеризуются нелинейными материальными соотношениями между полем намагничивания и плотностью магнитного потока. С помощью операционных усилителей и диодов некоторым экспериментаторам удается собрать отрицательные сопротивления с билинейной вольт-амперной характеристикой (см. гл. 4).

Не во всякой системе легко выявить нелинейности, во-первых, потому что мы часто приучены рассуждать на языке линейных систем, а во-вторых, потому что основные компоненты системы могут быть линейными и нелинейность является тонким эффектом. К примеру, отдельные элементы фермы крепления могут быть линейно упругими, но они собраны так, что имеются зазоры и присутствует нелинейное трение. Таким образом, нелинейность может скрываться в граничных условиях.

В примере с изогнутым стержнем нелинейные элементы выделяются без труда (рис. 2.2). В любом механическом устройстве, имеющем более одного положения статического равновесия, присутствуют зазор, мертвый ход или нелинейная жесткость. В случае стержня, изогнутого нагрузкой на конце (рис. 2.2, а), виновником является геометрическая нелинейность жесткости. В стержне, изгибаемом магнитными силами (рис. 2.2, б), источником хаотического поведения системы являются нелинейные магнитные силы.


Если зависимость U (I ) или I (U линейна и его сопротивление R постоянно ( R onst ) , то такой элемент называют линейным (ЛЭ) , а электрическую цепь, состоящую только из линейных элементов − линейной электрической цепью .

ВАХ линейного элемента симметрична и представляет собой прямую, проходящую через начало координат (рис. 16, кривая 1). Таким образом, в линейных электрических цепях выполняется закон Ома.

Если зависимость U (I ) или I (U ) какого-либо элемента электрической цепи не линейна, а его сопротивление зависит от тока в нем или напряжения на его выводах ( R ≠с onst ) , то такой элемент называют не линейным (НЭ) , а электрическую цепь при наличии хотя бы одного нелинейного элемента − нелинейной электрической цепью .

ВАХ нелинейных элементов непрямолинейны , и иногда могут быть несимметричны, например, у полупроводниковых приборов (рис. 16, кривые 2, 3, 4). Таким образом, в нелинейных электрических цепях зависимость между током и напряжением не подчиняется закону Ома.

Рис. 16. ВАХ линейного и нелинейных элементов:

кривая 1 – ВАХ ЛЭ (резистора); кривая 2 – ВАХ НЭ (лампы накаливания с металлической нитью); кривая 3 – ВАХ НЭ (лампы накаливания с угольной нитью;

кривая 4 – ВАХ НЭ (полупроводникового диода)

Примером линейного элемента является резистор.

Примерами нелинейных элементов служат: лампы накаливания, терморезисторы, полупроводниковые диоды, транзисторы, газоразрядные лампы и т.д. Условное обозначение НЭ приведено на рис. 17.

Например, с увеличением тока, протекающего по металлической нити накаливания электрической лампы, увеличивается ее нагрев, а следовательно, возрастает ее сопротивление. Таким образом, сопротивление лампы накаливания непостоянно.

Рассмотрим следующий пример. Приведены таблицы со значениями сопротивлений элементов при различных значениях тока и напряжения. Какая из таблиц соответствует линейному, какая нелинейному элементу?

Таблица 3

R , Ом

Таблица 4

R , Ом

Ответьте на вопрос, на каком из графиков изображен закон Ома? Какому элементу соответствует этот график?

1 2 3 4

А что можно сказать о графиках 1,2 и 4? Какие элементы характеризуют эти графики?

Нелинейный элемент в любой точке ВАХ характеризуется статическим сопротивлением, которое равно отношению напряжения к току, соответствующих этой точке (рис. 18). Например, для точки а :

.

Кроме статического сопротивления нелинейный элемент характеризуется дифференциальным сопротивлением, под которым понимается отношение бесконечно малого или весьма малого приращения напряжения ∆U к соответствующему приращению ∆I (рис. 18). Например, для точки а ВАХ можно записать

где β – угол наклона касательной, проведенной через точку а .

Данные формулы составляют основу аналитического метода расчета простейших нелинейных цепей.

Рассмотрим примеры. Если статическое сопротивление нелинейного элемента при напряжении U 1 =20 В равно 5 Ом, то сила тока I 1 составит…


Статическое сопротивление нелинейного элемента при токе 2 А составит…


Вывод по третьему вопросу: различают линейные и нелинейные элементы электрической цепи. В нелинейных элементах не выполняется закон Ома. Нелинейные элементы характеризуются в каждой точке ВАХ статическим и дифференцированным сопротивлением. К нелинейным элементам относятся все полупроводниковые приборы, газоразрядные лампы и лампы накаливания.

Вопрос № 4. Графический метод расчета нелинейных

электрических цепей (15 мин.)

Для расчета нелинейных электрических цепей применяются графический и аналитический методы расчета. Графический метод более простой и его мы и рассмотрим более подробно.

Пусть источник ЭДС Е с внутренним сопротивлением r 0 питает два последовательно соединенных нелинейных элемента или сопротивления НС1 и НС2 . Известны Е , r 0 , ВАХ 1 НС1 и ВАХ 2 НС2. Требуется определить ток в цепи I н

Сначала строим ВАХ линейного элемента r 0 . Это прямая, проходящая через начало координат. Напряжение U, падающее на сопротивления контура, определяется выражением

Чтобы построить зависимость U = f ( I ) , необходимо сложить графически ВАХ 0, 1 и 2 , суммируя ординаты, соответствующие одной абсциссе, затем другой и т.д. Получаем кривую 3 , представляющую собой ВАХ всей цепи. Использую эту ВАХ, находим ток в цепи I н , соответствующее напряжению U = E . Затем, используя найденное значение тока, по ВАХ 0, 1 и 2 находим искомые напряжение U 0 , U 1 , U 2 (рис. 19).

Пусть источник ЭДС Е с внутренним сопротивлением r 0 питает два параллельно соединенных нелинейных элемента или сопротивления НС1 и НС2 , ВАХ которых известны. Требуется определить ток в ветвях цепи I 1 и I 2 , падения напряжения на внутреннем сопротивлении источника и на нелинейных элементах.

Строим ВАХ I н = f ( U ab ) . Для этого складываем графически ВАХ 1 и 2 , суммируя абсциссы, соответствующие одной ординате, затем другой ординате и т.д. Строим ВАХ всей цепи (кривая 0,1,2 ). Для этого складываем графически ВАХ 0 и 1,2 , суммируя ординаты, соответствующие определенным абсциссам.

Использую эту ВАХ, находим ток в цепи I н , соответствующий напряжению U = E .

Использую ВАХ 1,2 , определяем напряжение U ab , соответствующее найденному току I н , и внутреннее падение напряжения U 0 , соответствующее этому току. Затем, используя ВАХ 1 и 2 находим искомые токи I 1 , I 2 , соответствующие найденному напряжению U ab (рис. 20).

Рассмотрим следующие примеры.

При последовательном соединении нелинейных сопротивлений с характеристиками R 1 и R 2 , если характеристика эквивалентного сопротивления R Э …


    пройдет ниже характеристики R 1

    пройдет выше характеристики R 1

    пройдет, соответствуя характеристике R 1

    пройдет ниже характеристики R 2

При последовательном соединении линейного и нелинейного сопротивлений с характеристиками а и б характеристика эквивалентного сопротивления…


    пройдет ниже характеристики а

    пройдет выше характеристики а

    пройдет, соответствуя характеристике а

    пройдет ниже характеристики б

Вывод по четвертому вопросу: нелинейные электрические цепи постоянного тока составляют основу электронных цепей. Существует два метода их расчете: аналитический и графический. Графический метод расчета позволяет более просто определить все необходимые параметры нелинейной цепи.

Классификация нелинейных элементов

Нелинейные цепи - это цепи, в которых есть хотя бы один нелинейный элемент. Нелинейный элемент - это элемент, для которого связь тока и напряжения задают нелинейным уравнением.

В нелинейных цепях не выполняется принцип наложения, и поэтому нет общих методов расчёта. Это вызывает необходимость разработки специальных методов расчета для каждого типа нелинейных элементов и режима их работы.

Нелинейные элементы классифицируют:

1) по физической природе: проводниковые, полупроводниковые, диэлектрические, электронные, ионные и т.д.;

2) по характеру делят на резистивные, емкостные и индуктивные;

ВАХ КВХ ВАХ

3) по виду характеристик все элементы делят

На симметричные и несимметричные. Симметричные - это такие, у которых характеристика симметрична относительно начала координат. Для не симметричных элементов раз и навсегда выбирают положительное направление напряжения или тока и для них в справочниках приводится ВАХ. Только такое направление можно использовать при решении задач с использованием этих ВАХ.

На однозначные и неоднозначные. Неоднозначные, когда одному значению тока или напряжения на ВАХ соответствуют несколько точек;

4) инерционные и безынерционные элементы. Инерционными элементами называют такие элементы, у которых нелинейность обусловлена нагревом тела при прохождении тока. Т. к. температура не может изменяться сколь угодно быстро, то при прохождении по такому элементу переменного тока с достаточно высокой частотой и неизменным действующим значением, температура элемента остается практически постоянной в течение всего периода изменения тока. Поэтому для мгновенных значений элемент оказывается линейным и характеризуется какой-то постоянной величиной R (I,U). Если же изменится действующее значение тока, то изменится температура и получится другое сопротивление, т. е. для действующих значений элемент станет нелинейным.

5) управляемые и неуправляемые элементы. Выше мы говорили о неуправляемых элементах. К управляемым элементам относят элементы с тремя и более выводами, у которых, изменяя ток или напряжение на одном выводе, можно менять ВАХ относительно других выводов.

Параметры нелинейных элементов и некоторые схемы их замещения

В зависимости от конкретной задачи удобно применять те или иные параметры элементов и общее число их велико, но чаще всего используют статические и дифференциальные параметры. Для резистивного двухполюсного элемента это будут статическое и дифференциальное сопротивления.

В заданной точке ВАХ

В заданной рабочей точке ВАХ

1. Дают небольшое приращение напряжения. Находят по ВАХ, вызванное этим приращением, приращение тока и берут их отношение. Недостатком этого способа является то, что для повышения точности расчета нужно уменьшать U и I, но при этом трудно работать с графиком.

2. К заданной точке кривой проводят касательную и тогда по геометрическому определению производной, получают

Где приращения берут на этой касательной и могут быть сколь угодно большими.

Если известен режим работы нелинейного элемента, то в этой точке известно его статическое сопротивление, а также напряжение и ток, поэтому его можно заменить одним из 3-х способов.


Если известно, что во время работы цепи ток и напряжение меняются в пределах «более-менее прямолинейного участка ВАХ», то этот участок описывают линейным уравнением и ставят ему в соответствие такую эквивалентную схему.

Линеаризуют этот участок уравнением вида U=a+ib.Получают для него коэффициенты уравнения.

При i=0 и U=U 0 =а,

усреднённое значение на этом участке.

Тогда, что соответствует следующей схеме замещения:


Эта схема будет справедлива для участка, ограниченного волнистой линией.

То же самое выражение можно записать по-другому:

Поэтому в некоторых задачах, где заранее известно, что токи и напряжения нелинейного элемента представляют в виде суммы постоянной составляющей Uрт, Iрт и переменной составляющей u ~ , i ~ c амплитудой << чем величина постоянной составляющей, отдельно рассчитывают режим на постоянном токе (напряжении) и отдельно для переменной составляющей. Из записей видно, что двухполюсный элемент для малой переменной составляющей можно заменить просто дифференциальным сопротивлением в рабочей точке.

Этот же подход применяют и в схемах с многополюсными элементами, но там не удаётся ввести только одно сопротивление, т. к. Ч. П. характеризуются четырьмя коэффициентами уравнений. Но можно найти эти коэффициенты для малых переменных составляющих токов и напряжений.

Пример: Биполярный транзистор (схема с общим эмиттером).

Пусть известно, что u j =U p ф+u kj , i j =I p ф+i kj

Схема замещения:

Применим дифференцирующие параметры и получим в форме «И».

u бк =h 21 i б +h 12 u кэ

i кэ =h 21 i б +h 22 u кэ

U бэ =H 11 I б +H 21 U кэ

Эти уравнения пишут для переменных составляющих, потому что изменяется процедура расчета элементов.

H 11 =U бэ /I б при I б =0, т.е. i б =I бр.т.

H 12 =U бэ /U кэ при I б =0

H 21 =I к /I б при U кэ =0

H 22 =I к /U кэ при I б =0, т.е. i б =I бр.т.

h 12 =ДU бэ /ДU кэ h 21 =Дi к /Дi б h 22 =Дi к /Дu кэ,

где I, U есть приращения токов и напряжений в окрестности рабочей точки.

Вольтамперные характеристики данного нелинейного элемента.

Методы расчёта нелинейных цепей постоянного тока

Различают: численные, аналитические и графические методы.

1) Численные - это методы численного решения нелинейных уравнений. Обычно используют ЭВМ. Они позволяют решить широкий круг задач, но ответ получается в виде числа.

2) Аналитические - это методы, в основе которых лежит аппроксимация ВАХ какой-нибудь подходящей функции. Если эта функция нелинейная, то получается нелинейная система уравнений. Чтобы она могла быть решена, приходиться очень аккуратно выбирать аппроксимирующую функцию.

← Вернуться

×
Вступай в сообщество «ahhost.ru»!
ВКонтакте:
Я уже подписан на сообщество «ahhost.ru»